Home
Class 12
MATHS
For any vector vec(a)," prove that "hat(...

For any vector `vec(a)," prove that "hat(i)xx(vec(a)xxvec(i))+hat(j)xx(vec(a)xxvec(j))+hat(k)xx(vec(a)xxhat(k))=2vec(a).`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any vector vec a , prove that hat i xx (vec a xx hat i)+ hat j xx (vec a xx hat j) + hat k xx(vec a xx hat k)= 2 vec a

The value of hat(i)xx(vec(a)xxhat(i))+hat(j)xx(vec(a)xxhat(j))+hat(k)xx(vec(a)xxvec(k)) is equal to

Prove that hat i xx(vec a xxhat i)hat j xx(vec a xxhat j)+hat k xx(vec a xxhat k)=2vec a

For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |vec(a) xx hat(k)|^(2) is equal to

Prove that hat(i)times(vec atimeshat(i))+hat(j)times(vec atimeshat(j))+hat(k)times(vec atimeshat(k))=2 vec a

Show that for any vector vec(a) , ( vec(a) xx hat(i)) ^(2) + ( vec(a) xx hat(j))^(2) + (vec(a) xx hat(k))^(2) =2 |vec(a) |^(2)

Prove that (vec a*hat i)(vec a xxhat i)+(vec a*j)(vec a xxhat j)+(vec a*hat k)(vec a xxhat k)=0