Home
Class 12
MATHS
int(1)/(tanx+cotx+secx+"cosec "x)dx is e...

`int(1)/(tanx+cotx+secx+"cosec "x)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The given expression f(x)=(1)/(tanx+cotx+secx+"cosec x") is equivalent to

int(dx)/(tanx+cotx+secx+cos e c x)=

int(1)/(tanx+cotx)dx=

int(1)/(tanx+cotx)dx=

int(secxcosecx)/(2cotx-secxcosecx)dx is equal to a) log|secx+tanx|+c b) log|secx+cosecx|+c c) (1)/(2)log|sec2x+tan2x|+c d) log|sec2x+cosec2x|+c

int(secx."cosec"x)/(2cotx-secx"cosec x")dx is equal to

int(secx."cosec"x)/(2cotx-secx"cosec x")dx is equal to

cotx+tanx=2"cosec "x

int(secx."cosec"x)/(2cotx-secx"cosec x")dx di equal to