Home
Class 12
MATHS
int(0)^( pi/2)log tan xdx=0...

int_(0)^( pi/2)log tan xdx=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: int_(0)^( pi/2)log|tan x|dx=0

int_(0)^( pi)log xdx

What is the value of int_0^(pi/2)log tan x dx ?

" (x) "int_(0)^( pi/4)tan xdx

int_(0)^( pi/2)log[tan x*cot x]dx

int_(0)^(pi//2) log (tan x ) dx=

int_(0)^(pi//2) log | tan x | dx is equal to

Prove that: int_(0)^( pi/2)log|tan x+cot x|dx=pi log_(e)2

The value of the integral int _(0)^(pi//2) log | tan x| dx is

int_0^(pi//2) log(tan x)dx =