Home
Class 12
MATHS
The line joining A (b cos alpha b sin ...

The line joining `A (b cos alpha b sin alpha )` and `B (a cos beta , a sin beta ) ` , where ` a ne b ` , is produced to the point M(x , y) so that AM : BM = b : a . Then `x "cos" (alpha+beta)/(2)+ y "sin" (alpha+beta)/(2)` is equal to _

Promotional Banner

Similar Questions

Explore conceptually related problems

The line joining A (b cos alpha, b sin alpha ) and B (a cos beta, a sin beta) , where a ne b , is produced to the point M(x,y) so that AM :MB = b :a Then xcosfrac(alpha+beta)(2)+ysinfrac(alpha+beta)(2)

The line joining A(b cos alpha b sin alpha) and B(a cos beta,a sin beta) is produced to the point M(x,y) so that AM and BM are in the ratio b:a. Then prove that x+y tan(alpha+(beta)/(2))=0

Line joining A(b cos alpha,b sin alpha) and B(a cos beta,a sin beta), is produced to the point M(x,y) such that AM:MB=b:a then x cos((alpha+beta)/(2))+y sin((alpha+beta)/(2))=

If x cos alpha + y sin alpha = x cos beta + y sin beta = 2a then cos alpha cos beta =

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" "tan" (alpha + beta)/2=

If x cos alpha + y sin alpha = x cos beta + y sin beta = a, 0

If sin alpha+sin beta=a and cos alpha+cos beta=b then tan((alpha-beta)/(2)) is equal to

sin alpha + sin beta = a "and" cos alpha + cos beta = b sin (alpha + beta) =