Home
Class 12
MATHS
" If "f(x)=int(1)^(x)(ln t)/(1+t)dt," th...

" If "f(x)=int_(1)^(x)(ln t)/(1+t)dt," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(a)(ln t)/(t)dt

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

Let F(x)= f(x) + f(1/x) , where f(x)= int_(1)^(x) (ln t)/(1+t)dt , then F(e)=

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))

If f(x)=int_(1)^(x)(ln t)/(1+t)dt where x>0, then the values of of ^(1) satisfying the equation f(x)+f((1)/(x))=2 is

Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int_(1)^(x) (log t)/(1+t) dt Then F (e) equals

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)