Home
Class 11
MATHS
" (in) "(1)/(a^(2)-b^(2))+(1)/(b^(2))=(1...

" (in) "(1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b, and c are in G.P.then prove that (1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))

If a, b, c are in geometric progression, then prove that : (1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))

If a, b, c are in geometric progression, then prove that : (1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))

If a,b,c are in G.P.,prove that: a(b^(2)+c^(2))=c(a^(2)+b^(2))A^(2)b^(2)c^(2)((1)/(a^(3))+(1)/(b^(3))+(1)/(c^(3)))=a^(3)+b^(3)+c^(3)((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))=(a+b+c)/(a-b+c)(1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))(a+2b=2c)(a-2b+2c)=a^(2)+4c^(2)

If a ,b ,a n dc are in G.P. then prove that 1/(a^2-b^2)+1/(b^2)=1/(b^2-c^2)dot

det[[ Prove that :,c^(2)a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),[c-1)^(2)]]=4det[[a^(2),b^(2),c^(2)a,b,c1,1,1]]

If a,b,c are sides of a triangle and |(a^(2),b^(2),c^(2)),((a+1)^(2),(b+1)^(2),(c+1)^(2)),((a-1)^(2),(b-1)^(2),(c-1)^(2))|=0 then

[[a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),(c-1)^(2)]]=k[[a^(2),b^(2),c^(2)a,b,c1,1,1]]