Home
Class 12
MATHS
" 54.The solution of the eqn."ydx-xdy=x^...

" 54.The solution of the eqn."ydx-xdy=x^(2)ydx" is "(a)y^(2)e^(-x^(2)/2)=C^(2)x^(2)(b)y=Cxe^(x^(2)/2)quad " (c) "x^(2)=C^(2)y^(2)e^(x^(2))" (d) "

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the equation ydx-xdy=x^2ydx is (A) y^2e^(-x^2/2)=C^2x^2 (B) y=Cxe^(x^2/2) (C) x^2=C^2y^2e^(x^2) (D) ye^(x^2)=x

The solution of the equation ydx-xdy=x^2ydx is (A) y^2e^(-x^2/2)=C^2x^2 (B) y=Cxe^(x^2/2) (C) x^2=C^2y^2e^(x^2) (D) ye^(x^2)=x

Write the solution of ydx-xdy=x^2ydx .

The solution of ydx-xdy+3x^(2)y^(2)e^(x^(3))dx=0 is

The solution of ydx-xdy+3x^(2)y^(2)e^(x^(3))dx=0 is

The solution of x dx + y dy = 2 (xdy-ydx) is

The general solution of ydx-xdy-3x^(2)y^(2)e^(x^(3)) dx =0 is