Home
Class 8
MATHS
" The domain of "f(x)=sqrt(x-2)+(1)/(log...

" The domain of "f(x)=sqrt(x-2)+(1)/(log(4-x))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=sqrt(log(2x-x^(2))) is :

The domain of f(x)=sqrt(log((1)/(|sinx|))) is :

The domain of f(x)=sqrt(2-log_(3)(x-1)) is

Find the domain of f(x)=1/(sqrt(x-[x])) (b) f(x)=1/(log[x]) f(x)=log{x}

Find the domain of f(x)=1/(sqrt(x-[x])) (b) f(x)=1/(log[x]) f(x)=log{x}

The domain of f(x)=log|x|+(1)/(sqrt(|x|))+(1)/(log)|x| is R-A where A is set

Domain of f(x)=sqrt(log_({x})[x])

Find the domain of f(x) = sin log(sqrt(4-x^(2))/(1-x))

Domain of f(x)=log(1-x)+sqrt(x^(2)-1)

Find the domain of f(x)=(1)/(sqrt(x-|x|))(b)f(x)=(1)/(log|x])f(x)=log{x}