Home
Class 10
MATHS
यदि ABC एक समकोण त्रिभुज C पर समकोण है |...

यदि ABC एक समकोण त्रिभुज C पर समकोण है | माना कि, `BC = a, CA = b, AB = c` है| यदि AB पर C में लम्ब की लम्बाई p है तो सिद्ध कीजिए कि
(i) `cp = ab`
(ii) `(1)/(p^(2)) = (1)/(a^(2)) + (1)/(b^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

ABC is a right triangle right angled at C. Let BC = a, CA = b, AB = c and let p be the length of perpendicular from C on AB. Prove that (i) pc = ab (ii) (1)/(p^(2)) = (1)/(a^(2)) + (1)/(b^(2)) .

ABC is a right triangle right angled at C. Let BC = a, CA = b, AB = c and let p be the length of perpendicular from C on AB. Prove that (i) pc = ab (ii) (1)/(p^(2)) = (1)/(a^(2)) + (1)/(b^(2)) .

ABC is a right triangle right angled at C. Let BC = a, CA = b, AB = c and let p be the length of perpendicular from C on AB. Prove that (i) pc = ab (ii) (1)/(p^(2)) = (1)/(a^(2)) + (1)/(b^(2)) .

ABC is a right triangle right angled at C. Let BC = a, CA = b, AB = c and let p be the length of perpendicular from C on AB. Prove that (i) pc = ab (ii) (1)/(p^(2)) = (1)/(a^(2)) + (1)/(b^(2)) .

ABC is a right triangle right-angled at C. Let BC=a,CA=b,AB=c and let p be the length of perpendicular from C on AB, prove that (i) cp=ab( ii) (1)/(p^(2))=(1)/(a^(2))+(1)/(b^(2))

In DeltaABC,angleC =90^(@). If BC=a, CA=b, AB=c and the length of the altitude from vertex C on side AB is p, then show that i. cp=ab ii. (1)/(p)^(2)=(1)/(a)^(2)+(1)/(b)^(2)

ABC is right angle triangle at C. Let BC=a ,CA=b,AB=c and Let 'P' be the length of perpendicular from C to AB.prove that (1)/(p^(2))=(1)/(a^(2))+(1)/(b^(2))

∆ABC is right angled at C and CD _|_ AB . If BC = a , CA=b , AB = c and CD = p . Then prove that cp=ab

ABC is a right traingle, right angled at C. if P is the length of perpendicular from C to AB and AB=c, BC=a and CA=b, then prove that (i) pc=ab (ii) 1/(p^(2)) = 1/(a^(2))+1/b^(2)