Home
Class 12
MATHS
If vec ra n d vec s are non-zero const...

If ` vec ra n d vec s` are non-zero constant vectors and the scalar `b` is chosen such that `| vec r+b vec s|` is minimum, then the value of `|b vec s|^2+| vec r+b vec s|^2` is equal to a.`2| vec r|^2` b. `| vec r|^2//2` c. `3| vec r""|^2` d. `|r|^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec r and vec s are non-zero constant vectors and the scalar b is chosen such that |vec r+bvec s| is minimum,then the value of |vec bvec s|^(2)+|vec r+bvec s|^(2) is equal to a.2|vec r|^(2)b|vec r|^(2)/2c.3|vec r|^(2) d.| boldsymbol r|^(2)

Let vec a xx vec b,vec b xx vec c,vec c xx vec a are non coplanar vectors and [[vec a,vec b,vec c]]=1.vec r is a vector such that vec r.vec a=vec r.vec b=vec r.vec c=2, then area of triangle whose vertices are vec a,vec b and vec c is (A) |vecr|/2 (2) 2|vecr| (C) |vecr|/4 (D) 4|vecr|

If vec a is a unit vector, vec a xxvec r = vec b, vec a * vec r = c, vec a * vec b = 0, then vec r is equal to

Let vec aa n d vec b be two non-zero perpendicular vectors. A vecrtor vec r satisfying the equation vec rxx vec b= vec a can be vec b-( vec axx vec b)/(| vec b|^2) b. 2 vec b-( vec axx vec b)/(| vec b|^2) c. | vec a| vec b-( vec axx vec b)/(| vec b|^2) d. | vec b| vec b-( vec axx vec b)/(| vec b|^2)

vec a,vec b,vec c are the three coplanar vectors and if vec r*vec a=vec r*vec b=vec r*vec c=0 then prove that vec r is a zero vector

If vec a is a unit vector, vec a xxvec r = vec b, vec a * vec r = c, vec a * vec b = 0 then vec r is equal to

If vec r* vec a =0 = vec r* vec b ,where vec a and vec b are non-coplanar vectors then

vec a,vec b and vec c are three non-coplanar vectors and vec r is any arbitrary vector.Prove that [vec bvec cvec r]vec a+[vec c+vec avec r]vec b+[vec avec bvec r]vec c=[vec avec bvec c]vec r

If vec r* vec a =0 = vec r* vec b =0 and also vec r* vec c =0 for some non-zero vector vec r , then the value of vec a*(vec b xx vec c) is........