Home
Class 10
MATHS
If P(x)=x^(4)+ax^(3)+bx^(2)+cx+d,P(1)=P2...

If `P(x)=x^(4)+ax^(3)+bx^(2)+cx+d,P(1)=P2=P(3)=0` then find `P(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given P(x) =x^(4) +ax^(3) +bx^(2) +cx +d such that x=0 is the only real root of P'(x) =0 . If P(-1) < P(1), then in the interval [-1,1]

Given P(x) =x^(4) +ax^(3) +bx^(2) +cx +d such that x=0 is the only real root of P'(x) =0 . If P(-1) lt P(1), then in the interval [-1,1]

Given P(x) =x^(4) +ax^(3) +bx^(2) +cx +d such that x=0 is the only real root of P'(x) =0 . If P(-1) lt P(1), then in the interval [-1,1]

Let P(x)=x^(4)+ax^(3)+bx^(2)+cx+d, where a ,b,c,d in R. Suppose P(0)=6,P(1)=7,P(2)=8 and P(3)=9 , then find the value of P(4)

Let P(x)=x^(4)+ax^(3)+bx^(2)+cx+d, where a,b,c,d in RR . Suppose P(0)=6,P(1)=7,P(2)=8 and P(3)=9, then find the value of P(4)

Let P(x) is a six degree polynomial with leading coefficient 1 or in other words P(x)=x^(6)+ax^(5)+bx^(4)+cx^(3)+dx^(2)+ex+f such that P(1)=1,P(2)=2,P(3)=3,P(4)=4,P(5)=5&P(6)=6 Then find P(7)

Given P(x)=x^(4)+ax^(3)+bx^(2)+cx +d such that x=0 is the only real root of P'(x)==0 . If P(-1) lt P(1) , then in the interval [-1,1]