Home
Class 12
MATHS
The intervals of increase of f(x) def...

The intervals of increase of `f(x)` defined by `f(x)=int_(-1)^x(t^2+2t)(t^2-1)dt` is equal to `(-oo,(-3)/2)uu(0,3)uu(10 ,oo)` `(-oo,\ -2)uu((-1)/2,1/2)uu(4,oo)` `(-oo,\ -2)uu(-1,0)uu(1,oo)` `(-oo,\ -2)uu((-3)/4,1/4)uu(1,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The intervals of increase of f(x) defined by f(x)=int_(-1)^(x)(t^(2)+2t)(t^(2)-1)dt is equal to (-oo,(-3)/(2))uu(0,3)uu(10,oo)(-oo,-2)uu((-1)/(2),(1)/(2))uu(4,oo)(-oo,-2)uu((-3)/(4),(1)/(2))uu(4,oo)(-oo,-2)uu((-3)/(4),(1)/(4))uu(1,oo)

Solution set of the inequation (x^2+4x+4)/(2x^2-x-1)>0, is x in (-oo,-2)uu(-2,1) x in (-oo,-2)uu(-2,-1/2)uu(1,oo) x in (-oo,-2)uu(-1/2,1)uu(1,oo) x in (-oo,1)

Solution set of the inequation (x^(2)+4x+4)/(2x^(2)-x-1)>0, is x in(-oo,-2)uu(-2,1)x in(-oo,-2)uu(-2,-(1)/(2))uu(1,oo)x in(-oo,-2)uu(-(1)/(2),1)uu(1,oo)x in(-oo,1)

The domain of f(x)=3/(4-x^2)+log_(10) (x^3-x) (1) (-1,0)uu(1,2)uu(3,oo) (2) (-2,-1)uu(-1,0)uu(2,oo) (3) (-1,0)uu(1,2)uu(2,oo) (4) (1,2)uu(2,oo)

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these

The domain of the function f(x)=(sin^(-1)(3-x))/(I n(|x|-2))i s [2,4] (b) (2,3)uu(3,4] (c) (0,1)uu(1,oo) (d) (-oo,-3)uu(2,oo)

The domain of the function f(x)=(sin^(-1)(3-x))/(I n(|x|-2)i s (a) [2,4] (b) (2,3)uu(3,4] (c) (0,1)uu(1,oo) (d) (-oo,-3)uu(2,oo)

The domain of the function f(x)=(sin^(-1)(3-x))/(I n(|x|-2)i s (a) [2,4] (b) (2,3)uu(3,4] (c) (0,1)uu(1,oo) (d) (-oo,-3)uu(2,oo)