Home
Class 12
MATHS
[" 5.Let "f(x)" be continuous on "[a,b],...

[" 5.Let "f(x)" be continuous on "[a,b]," differentiable in "(a,b)],[" and "f(x)!=0" for all "x in[a,b]" .Then prove that there exists "],[" one "c in(a,b)" such that "(f'(c))/(f(c))=(1)/(a-c)+(1)/(b-c)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)be continuous on [a,b], differentiable in (a,b) and f(x)ne0"for all"x in[a,b]. Then prove that there exists one c in(a,b)"such that"(f'(c))/(f(c))=(1)/(a-c)+(1)/(b-c).

If f(x) is continuous in [a, b] and differentiable in (a, b), then prove that there exists at least one c in (a, b) "such that" (f'(c))/(3c^(2)) = (f(b) - f(a))/(b^(3) - a^(3)) .

If f(x) is continuous in [a , b] and differentiable in (a,b), then prove that there exists at least one c in (a , b) such that (f^(prime)(c))/(3c^2)=(f(b)-f(a))/(b^3-a^3)

If f(x) is continuous in [a , b] and differentiable in (a,b), then prove that there exists at least one c in (a , b) such that (f^(prime)(c))/(3c^2)=(f(b)-f(a))/(b^3-a^3)

If f(x) is continuous in [a , b] and differentiable in (a,b), then prove that there exists at least one c in (a , b) such that (f^(prime)(c))/(3c^2)=(f(b)-f(a))/(b^3-a^3)

If f(x) is continuous in [a,b] and differentiable in (a,b), then prove that there exists at least one c in(a,b) such that (f'(c))/(3c^(2))=(f(b)-f(a))/(b^(3)-a^(3))

If f(x) is continuous in [a , b] and differentiable in (a,b), then prove that there exists at least one c in (a , b) such that (f^(prime)(c))/(3c^2)=(f(b)-f(a))/(b^3-a^3)

If f(x) is differentiate in [a,b], then prove that there exists at least one c in (a,b)"such that"(a^(2)-b^(2))f'(c)=2c(f(a)-f(b)).