Home
Class 12
MATHS
" I) "7^(log(7)x)+2x+9=0...

" I) "7^(log_(7)x)+2x+9=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x:backslash x^(2)+7^(log_(7)x)-2=0

The solution of the equation "log"_pi("log"_(2) ("log"_(7)x)) = 0 , is

The solution of the equation "log"_pi("log"_(2) ("log"_(7)x)) = 0 , is

If log_(12) (log_(7) x) lt 0 , then x belong to ______.

Find x, if : (i) log_(3) x = 0 (ii) log_(x) 2 = -1 (iii) log_(9) 243 = x (iv) log_(5) (x - 7) = 1 (v) log_(4) 32 = x - 4 (vi) log_(7) (2x^(2) - 1) = 2

Sum of all the solutions of the equation 5^((log_(5)7)^(2x))=7^((log_(7)5)^(x)) is equal to

(d)/(dx)log_(7)(log_(7)x)= (a) (1)/(x log_(e)x) (b) (log_(e)7)/(x log_(e)x) (c) (log_(7)e)/(x log_(e)x) (d) (log_(7)e)/(x log_(7)x)

Prove that (2^(log_(2^(1//4))x)-3^(log_(27)(x^(2)+1)^(3))-2x)/(7^(4log_(49)x)-x-1)gt0,AAx in(0,oo) .

For x>2,quad if log_((1)/(7))(3^(x)+2x-5)=x(1-log_(7)21) then x=

Solve for x:(a) log_(0.3)(x^(2)+8) gt log_(0.3)(9x) , b) log_(7)( (2x-6)/(2x-1)) gt 0