Home
Class 10
MATHS
सिद्ध कीजिए कि बिन्दु (2a, 4a), (2a, 6a)...

सिद्ध कीजिए कि बिन्दु `(2a, 4a), (2a, 6a)` तथा `(2a+sqrt(3)a, 5a) ` एक समबाहु त्रिभुज के शीर्ष हैं ।

Promotional Banner

Similar Questions

Explore conceptually related problems

The points (2, 4), (2, 6), (2+ sqrt(3),5) are the vertices of

The triangle with vertices (2,4), (2,6) and (2+ sqrt(3) ,5) is

The triangle formed by the points A (2a, 4a), B(2a, 6a) and C (2a +sqrt3a, 5a) is

A(2a , 4a) , B(2a , 6a), C(2a + sqrt(3)a , 5a ) then DeltaABC is .......triangle.

If the altitude of an equilateral triangle is 12 sqrt3 cm, then its area would be: यदि एक समबाहु त्रिभुज का शीर्ष लम्ब 12 sqrt3 सेमी. है, तो उसका क्षेत्रफल कितना होगा?

Prove that (2a, 4a), (2a, 6a), and (2a + sqrt(3a) , 5a) are the vertices of an equilateral triangle.

Prove that the points (2a, 4a), (2a, 6a) and (2a+ sqrt(3) a, 5a) are the vertices of an equilateral triangle.

What is the area of an equilateral triangle of side 4 sqrt3 cm? 43 सेमी के समबाहु त्रिभुज का क्षेत्रफल कितना है?