Home
Class 12
MATHS
If x^(y) + y^(x) = a^(b) then prove tha...

If `x^(y) + y^(x) = a^(b)` then prove that `(dy)/(dx)=-[(yx^(y-1)+y^(x)Logy)/(x^(y)Logx+xy^(x-1))]` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If x^(x)+y^(x)=1, prove that (dy)/(dx)=-{(x^(x)(1+log x)+y^(x)log y)/(xy^((x-1)))}

If x^y = e^(x-y) then prove that (dy)/(dx)=logx/(1+logx)^2 .

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If xy log(x + y) = 1 , then prove that (dy)/(dx) = -(y(x^(2)y + x + y))/(x(xy^(2) + x + y)) .