Home
Class 12
MATHS
If f(x)=log.(1+x)/(1-x) and g(x)=(3x+x^...

If `f(x)=log.(1+x)/(1-x) and g(x)=(3x+x^(3))/(1+3x^(2))` then `(fog) (x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given f(x)=log((1+x)/(1-x)) and g(x) = (3x+x^(3))/(1+3x^(2)) , then fog(x) is

If f(x)=log((1+x)/(1-x)) and g(x)=((3x+x^(3))/(1+3x^(2))) then f(g(x)) is equal to f(3x)(b)quad {f(x)}^(3) (c) 3f(x)(d)-f(x)

Given f(x)=log_(10)((1+x)/(1-x)) and g(x)=(3x+x^(3))/(1+3x^(2)) , then fog(x) equals

Given f(x)=log_(10)((1+x)/(1-x)) and g(x)=(3x+x^(3))/(1+3x^(2)) , then fog(x) equals

If f(x)=log((1+x)/(1-x))andg(x)=(3x+x^(3))/(1+3x^(2)) , then f(g(x)) is equal to :

If f(x) =log e (1 + x)/(1 - x) and g(x) = (3x + x^3)/(1 + 3x^2) , then prove that f[g(x)] = 3 cdot f(x) .

If f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2)) , then f(g(x)) is equal to (a) f(3x) (b) {f(x)}^3 (c) 3f(x) (d) -f(x)

Given f(x)=log[((1+x))/((1-x))]andg(x)=((3x+x^(2)))/((1+3x^(2))) , then what is f[g(x)] equal to ?