Home
Class 12
MATHS
If A=[[1,4,0],[5,2,6],[1,7,1]] and A^(-1...

If `A=[[1,4,0],[5,2,6],[1,7,1]]` and `A^(-1)=(1)/(36)(alpha A^(2)+beta A+yI),` where `I` is an identity matrix of order 3, then value of `alpha, beta, gamma`

Promotional Banner

Similar Questions

Explore conceptually related problems

A=([1,0,0],[0,1,1],[0,-2,4])" and if "A^(-1)=(1)/(6)[alpha A^(2)+beta A+gamma I]" when "I" is unit matrix of order "3" then the value of "alpha+beta+gamma" is "

If A=[[2,3],[1,4]] and if (A+I)^(-1)=alpha A+beta I then (alpha,beta)= ? (where I is identity matrix and alpha,beta in R

[" Let "A=[[1,2],[-1,5]]" .If "A^(2)=alpha A+beta I" ,where "alpha,beta in R" and "l" is an identity matrix of order "2" ,then "],[alpha+beta" is equal to "]

Let A= [(1,2),(-1,4)] . If A^(-1)= alpha I +beta A, alpha, beta in R , I is a 2 xx 2 identity matrix, then 4(alpha-beta) is equal to

Let A=([2,1,3],[1,1,2],[3,1,1]) and A^(-1)=alpha A^(2)+beta A+gamma I ,then which of the following holds good (A) alpha+beta=1 (B) 3(alpha+beta+gamma)=10(C) 8(beta+gamma)=11 (D) 8(alpha+gamma)=3]]

If alpha and beta are the roots of 4x^(2) + 3x +7 =0 then the value of 1/alpha + 1/beta is

alpha,beta, gamma roots of 4x^(3)+8x^(2)-x-2=0 then value of (4(alpha+1)(beta+1)(gamma+1))/(alpha beta gamma)