Home
Class 12
MATHS
If alpha,beta are the roots x^(2)-px+1=...

If `alpha,beta` are the roots `x^(2)-px+1=0 and gamma "is a root of "x^(2)+px+1=0` ,then `(alpha+gamma)(beta+gamma)` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of x^2-px+1=0 and gamma is a root of x^2+px+1=0 , then (alpha+gamma)(beta+gamma) is

If alpha , beta are the roots of x^2 + px +1=0 and gamma , delta are the roots of x^2 +qx +1=0 then (alpha - gamma )(beta - gamma)(alpha + delta )( beta + delta )=

If alpha , beta are the roots of x^2 +px -q=0 and gamma , delta are the roots of x^2 +px+r=0 then (alpha - gamma ) ( beta - gamma) ( alpha - delta ) ( beta- delta )=

Suppose alpha, beta are the roots of x^(2) - px + 2 . 89 = 0 and gamma be a root of x^(2) + px + 2. 89 = 0 , then (gamma + alpha) (gamma + beta) is equal to _______

If alpha,beta are the roots of x^(2)+px+q=0and gamma,delta are the roots of x^(2)+px+r=0, then ((alpha-gamma)(alpha-delta))/((beta-gamma)(beta-delta))= a.1b.q c.r d.q+r

If alpha,beta be the roots x^2+px-q=0 and gamma,delta be the roots of x^2+px+r=0, p+rphi0 ,then ((alpha-gamma)(alpha-delta))/((beta-gamma)(beta-delta)) is equal to

If alpha, beta are the roots of quadratic equation x^(2)+px+q=0 and gamma, delta are the roots of x^(2)=px+r=0, then (alpha-gamma).(alpha-delta) is equal to