Home
Class 12
MATHS
If A+B+C=pi then prove cos( (A)/2) cos( ...

If `A+B+C=pi` then prove `cos( (A)/2) cos( (B-C)/2) + cos( B/2) cos((C-A)/2) + cos( C/2) cos( (A-B)/2) = sinA +sinB+sinC`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi then prove that cos^2 (A/2)+cos^2 (B/2)-cos^2 (C/2)=2cos(A/2)cos(B/2)sin(C/2)

If A, B , C =pi, then prove that cos ^(2). (A)/(2)+ cos^(2). (C)/(2)- cos^(2). (C)/(2)=2(cos. (A)/(2) cos. (B)/(2)sin. (C)/(2))

If A+B+C=0 , then prove that cos ^(2)A+ cos ^(2) B + cos ^(2) C =1+2 cos A cos B cos C

If A+B+C=pi then prove that cos((A)/(2))+cos((B)/(2))+cos((C)/(2))=4cos((pi-A)/(4))cos((pi-B)/(4))cos((pi-C)/(4))

If A+B+C=pi then prove that cos^(2)((A)/(2))+cos^(2)((B)/(2))-cos^(2)((C)/(2))=2cos((A)/(2))cos((B)/(2))sin((C)/(2))

If A +B+C = 180^circ , prove that cos A/2+ cos B/2 +cos C/2 = 4cos (pi-A)/4 * cos(pi-B)/4 cos(pi-C)/4

If A+B+C=2 pi, then prove that cos^(2)B+cos^(2)C-sin^(2)A=2cos A cos B cos C

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos( A/2 )cos( B/2) cos(C/2)

If A + B + C = pi then prove that cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)