Home
Class 12
MATHS
Find the value of int(0)^(4)[x]dx, where...

Find the value of `int_(0)^(4)[x]dx`, where `[.]` represents the gretest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(100)x-[x]dx where [.] represents the greatest integer function).

The value of int_(0)^(2 pi)[2sin x]dx, where [.] represents the greatest integral functions,is

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).