Home
Class 12
MATHS
let f(x)=e^x ,g(x)=sin^(- 1) x and h(x)=...

let `f(x)=e^x ,g(x)=sin^(- 1) x `and `h(x)=f(g(x))` t h e n f i n d `(h^(prime)(x))/(h(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) = e ^(x) , g (x) = Sin ^(-1) x and h (x) =f (g (x)), then (h'(x))/(h (x))=

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….

If f(x)=sqrt(x^2+1),\ \ g(x)=(x+1)/(x^2+1) and h(x)=2x-3 , then find f^(prime)(h^(prime)(g^(prime)(x))) .

If f(x)=log_(10)x and g(x)=e^(ln x) and h(x)=f [g(x)] , then find the value of h(10).

If f(x)=e^(x+a) , g(x)=x^(b^2) and h(x)=e^(b^2x) ,show that (g[f(x)])/(h(x))=e^(ab^2)

If f(x) = 2x + |x|, g(x) = 1/3(2x - |x|) and h(x) = f(g(x)), then find the domain of sin^(1-)(h(h(h(h...h(x)...))))/(n "times")