Home
Class 12
MATHS
The value of Lim(x->0) ((1^x+2^x+3^x+......

The value of `Lim_(x->0) ((1^x+2^x+3^x+.............n^x)/n)^(a/pi)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

lim_(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

The value of lim_(xrarr0)(1^x+2^x+3^x+...+n^x)^(a//x)/n , is:

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is a. (n!)^(a//n) b. n! c. a^(n!) d. Doesn't exist