Home
Class 12
MATHS
সমাধান করো : dy/dx = (sin(logx)) / logy...

সমাধান করো : `dy/dx = (sin(logx)) / logy`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) of y=sin(logx)

If x^x + y^x = 1 , prove that : dy/dx = -[(x^x (1+logx) + y^x.logy)/(x.y^((x-1)))]

Solve: x dy/dx=y(logy-logx+1)

Find (dy)/(dx), if y=(sin x)^(logx) .

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)=y(logy-logx-1)

Find dy/dx if logy=5x^2

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)