Home
Class 12
MATHS
If the roots of x^3 - 12x^2 +39x+k=0 are...

If the roots of `x^3 - 12x^2 +39x+k=0` are in A.P. then `k`= (i )`28` (ii)`-28` (iii)`18` (iv)`-18`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the root of kx^3 - 18x^2 - 36 x+8=0 are in H.P then k=

If the root of kx^3 - 18x^2 - 36 x+8=0 are in H.P then k=

Solve if the roots of x^3-12x^2+39x-28=0 are in AP.

If the roots 4x^(3) - 12x^(2) + 11x + k = 0 are in A.P. then k =

If the roots of 4x^(3)-12x^(2)+11x+k=0 are in in A.P., then k=

If the roots of 2x^(3) - 3x^(2) + kx + 6 = 0 are in A.P then k =

If the roots of kx^(3) -18x^(2) -36x + 8 =0 are in H.P, then k is

If the roots of the equation x^(3)-12x^(2)+39x+k=0 are in A.P., then k (i) 28(ii)-28 (iii) 18(iv)-18

If zeros of f(x) = x^(3) - 12 ^(2) + 39 x + k are in A.P., find k.

If the roots of the equation 4x^(3)-12x^(2)+11x+k=0 are in A.P.Then K=