Home
Class 11
MATHS
If f(n+1)=1/2{f(n)+9/(f(n))},n in N ,...

If `f(n+1)=1/2{f(n)+9/(f(n))},n in N ,` and `f(n)>0 ` for all ` n in N ,` then find `lim_(n->oo)f(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(n+1)=(1)/(2){f(n)+(9)/(f(n))},n in N and f(n)>0 for all n in N, then find lim_(n rarr oo)f(n)

If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n in N , then lim_( n to oo)f(n) is equal to

If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n in N , then lim_( n to oo)f(n) is equal to

If f(n+1)=1/2{f(n)+9/(f(n))},ninNandf(n)gt0 for all ninN then find Lt_(ntooo)f(n) .

If f(1)=1, f(n+1)=2f(n)+1, n ge1 , then f(n) is

If f(1) = 1, f(n+1)= 2f (n) + 1, n ge 1 then f(n) = .........

If f(1) = 1 and f(n + 1) = 2 f(n) + 1, if n ge 1, then f(n) is.

Given f(1)=2 and f(n+1)=(f(n)-1)/(f(n)+1)AA n in N then

Let f: N -> R and g : N -> R be two functions and f(1)=0.8, g(1)=0.6 , f(n+1)=f(n)cos(g(n))-g(n)sin(g(n)) and g (n+1)=f(n) sin(g(n))+g(n) cos(g(n)) for n>=1 . lim_(n->oo) f(n) is equal to

Let f: N -> R and g : N -> R be two functions and f(1)=08, g(1)=0.6 , f(n+1)=f(n)cos(g(n))-g(n)sin(g(n)) and g (n+1)=f(n) sin(g(n))+g(n) cos(g(n)) for n>=1 . lim_(n->oo) f(n) is equal to