Home
Class 12
MATHS
(cos^(4) x - sin^(4) x) is equal to...

` (cos^(4) x - sin^(4) x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int _(-pi)^(pi) (sin^(4)x)/(sin^(4) x + cos^(4) x )dx is equal to

int ( sin^(4) x - cos ^(4) x ) dx is equal to

If sin x + sin^(2) x= 1 , then the value of cos^(8) x - cos ^(4) x + 2cos^(2)x -1 is equal to :

int _(-pi)^(pi) (sin^(4)x)/(sin^(2) x + cos^(4) x )dx is equal to

The value of log_(sin^(2)x+cos^(4)x+2)(cos^(2)x+sin^(4)x+2) is equal to

The value of the definite integral int_(-(pi)/(4))^((pi)/(4)) (dx)/((1+e^(x cos x))(sin^(4)x +cos^(4)x)) is equal to

If 2sin x-cos2x=1 ,then (cos^(2)x+cos^(4)x+4)/(2) is equal to

lim_(x to oo)(sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to

lim_(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to