Home
Class 12
MATHS
If g, h, k denotes the side of a pedal t...

If g, h, k denotes the side of a pedal triangle, then prove that
`(g)/(a^(2))+ (h)/(b^(2))+ (k)/(c^(2))=(a^(2)+b^(2) +c^(2))/(2 abc)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If g,h,k denote the side of a pedal triangle,then (g)/(a^(2))+(h)/( b^(2))+(k)/( c^(2))=( a^(2)+ b^(2)+ c^(2))/(lambda abc) then lambda =?

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

In Delta ABC prove that 2(b cos^(2)((C)/(2))-c cos^(2)((B)/(2)))=a+b+c

In Delta ABC prove that a(b^2 + c^2) cosA + b(c^2 +a^2)cosB + c(a^2 + b^2) cosC = 3abc

If |((a^(2)+b^(2))//c, c, c),(a,(b^(2)+c^(2))//a,a),(b,b,(c^(2)+a^(2))//b)|=k(abc) then k=

In Delta ABC sin((A)/(2))*cos((B)/(2))=(a+c-b)/(2c)k then k=