Home
Class 8
MATHS
" 1.If "f(x)=cos(10;x)" ,then show that ...

" 1.If "f(x)=cos(10;x)" ,then show that "f([1],[x])f([1],[y])-(1)/(2)(f([x],[y])+f(xy)]=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos(logx) , then show that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0

If f(x)=cos(logx) , then prove that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0

If f(x) = cos(log_ex) then show that f(x).f(y)-1/2[f(xy) + f(x/y)]=0

If f(x)=cos(logx) ,show that f(x)f(y)-1/2 [ f (x/y) + f(xy) ]=0

If f(x) = cos(log x) , then f((1)/(x)) f((1)/(y) - (1)/(2)[f((x)/(y)) + f(xy)] =

If f(x) = cos(log_e x) , then find the value of f(x) cdot f(y) - 1/2[f(x/y) + f(xy)]

If f(x)=cos(logx) , then : f(x).f(y)-(1)/(2)(f((x)/(y))+f(xy)) has the value :

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=