Home
Class 12
MATHS
cot^(-1)(sqrt(1+sin x)+sqrt(1-sin x))/(s...

cot^(-1)(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cot^(-1) ((sqrt(1+sin x) +sqrt(1-sin x))/(sqrt(1+sin x) -sqrt(1-sinx)))=(x)/(2), x in (0, (pi)/(4)) .

If y=(tan^(-1)(sqrt(1+sin x)+sqrt(1-sin x)))/(sqrt(1+sin x)-sqrt(1-sin x)) find the value of (dy)/(dx)

int_(0)^(pi//2)tan^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]\ dx

Differentiate 'tan^(^^)(-1){(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))},darr backslash0

Write the simplest form : cot^(-1) [(sqrt(1+sinx)+sqrt(1-sin x))/(sqrt(1+sinx)-sqrt(1-sin x)]], x epsilon [0, pi/4]

Prove that cot^(-1)((sqrt(1+sin)+sqrt(1-sin x))/(1sqrt(1+sin)-sqrt(1-sin x)))=(x)/(2);x in(0,(pi)/(4))

Prove that : cot^-1[(sqrt(1+sin x) + sqrt(1-sin x))/(sqrt1+sin x + sqrt(1-sin x))] = x/2, x in (0, pi/4)

(d)/(dx) Tan^(-1)[(sqrt(1+sinx) - sqrt(1-sin x))/(sqrt(1+sin x) + sqrt(1-sin x))]=

If x in(pi,(3 pi)/(2)) then the value of tan^(-1)((sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x)))

If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]] where 0 lt x lt pi/2 find (dy)/(dx)