Home
Class 12
MATHS
f(x)=|x loge x| monotonically decreases...

`f(x)=|x log_e x|` monotonically decreases in (a)`(0,1/e)` (b) `(1/e ,1)` (c)`(1,oo)` (d) `(1/e ,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=|x log_e x| monotonically decreases in (0,1/e) (b) (1/e ,1) (1,oo) (d) (1/e ,oo)

f(x)=|x log_(e)x| monotonically decreases in (0,(1)/(e))( b) ((1)/(e),1)(c)(1,oo)(d)((1)/(e),oo)

The function f(x)=x^(x) decreases on the interval (a) (0,e)(b)(0,1)(c)(0,1/e)(d)(1/e,e)

The function f(x)=x^x decreases on the interval (a) (0,\ e) (b) (0,\ 1) (c) (0,\ 1//e) (d) (1//e ,\ e)

The function x^x decreases in the interval (a) (0,e) (b) (0,1) (c) (0,1/e) (d) none of these

The function x^x decreases in the interval (a) (0,e) (b) (0,1) (c) (0,1/e) (d) none of these

Let f(x) = int e^(x) (x - 1) (x - 2)dx . Then f decreases in the interval a) (-oo, - 2) b) (-2, -1) c)(1, 2) d) (2, + oo)

The function x^(x) decreases in the interval a)(0, e) b)(0, 1) c) (0, (1)/(e)) d)None of these

The domain of f(x)=log|log x|is(0,oo)(b)(1,oo)(c)(0,1)uu(1,oo)(d)(-oo,1)

The interval of increase of the function f(x)=x-e^x+tan(2pi//7) is (a) (0,\ oo) (b) (-oo,\ 0) (c) (1,\ oo) (d) (-oo,\ 1)