Home
Class 12
MATHS
Find the value of tan^(-1)(-1/(sqrt(3)))...

Find the value of `tan^(-1)(-1/(sqrt(3)))+cot^(-1)((1)/(sqrt(3))) + tan^(-1)[sin'((-pi)/(2))]`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (2tan^(-1)((1)/(sqrt(3)))+cos(tan^(-1)(2sqrt(2)))

Find the value of tan^(-1)sqrt(3)-cot^(-1)-sqrt(3)

Find the value of : cot^(-1) (-(1)/(sqrt(3)))+ tan ^(-1) (sqrt(3))

Find the value of sin[tan^(- 1)(-sqrt(3))+cos^(- 1)((sqrt(3))/- 2)]

Find the value of tan^(-1)(-1/sqrt3)+cot^(-1)(1/sqrt3)+tan^(-1)[sin((-pi)/2)]

Find the value of tan^(-1) sqrt3 - cot^(-1) (-sqrt3)

Find the value of tan^-1 (sqrt3) - cot^-1 (-sqrt3)

Find the value of : tan^(-1) ((-1)/(sqrt(3)))+cos^(-1)((-sqrt(3))/2)+sin^(-1)(1/2)

Find the value of sin[tan tan^(-1)(-sqrt(3))+cos^(-1)((sqrt(3))/(-2))]

Evaluate: tan^(- 1)(-1/(sqrt(3)))+tan^(- 1)(-sqrt(3))+tan^(- 1)(sin(-pi/2))