Home
Class 12
MATHS
Let omega=-1/2+i(sqrt(3))/2, then value...

Let `omega=-1/2+i(sqrt(3))/2,` then value of the determinant `[[1, 1, 1],[ 1,-1,-omega^2],[omega^2, omega^2,omega]]` is (a) `3omega` (b) `3omega(omega-1)` `3omega^2` (d) `3omega(1-omega)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega=-(1)/(2)+i(sqrt(3))/(2). Then the value of the determinant det[[1,1,11,1,omega^(2)1,omega^(2),omega^(4)]]3 omega(omega-1)(C)3 omega^(2)(D)3 omega(1-omega)

Let omega = - (1)/(2) + i (sqrt3)/(2) , then the value of the determinant |(1,1,1),(1,-1- omega^(2),omega^(2)),(1,omega^(2),omega^(4))| , is

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]] =

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]]

|[1,omega,omega^2] , [omega, omega^2,1] , [omega^2,1,omega]|=0

If omega is the complex cube root of unity,then prove that det[[1,1,11,-1-omega^(2),omega^(2)1,omega^(2),omega^(4)]]=+-3sqrt(3)i

if omega=(-1+sqrt(3)i)/(2), then arg(omega^(2)) is