Home
Class 11
MATHS
cos (x^(3).e^(x))...

`cos (x^(3).e^(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin h^(3)x-cos h^(3)x=(ke^(x)-e^(-kx))/(1-k) then k=

int _(log pi - log 2 ) ^(log pi) (e ^(x))/(1- cos ((2)/(3)e ^(x)))dx is equal to

The curve satisfying the differential equation sin(x^(3))e^(y)dy+3x^(2)cos(x^(3))e^(y)dx=x sin (x^(2))dx C is the constant of integration is lambda sin (x^(3))e^(y)+cos(x^(2))=C . Then, the value of lambda is

The curve satisfying the differential equation sin(x^(3))e^(y)dy+3x^(2)cos(x^(3))e^(y)dx=x sin (x^(2))dx C is the constant of integration is lambda sin (x^(3))e^(y)+cos(x^(2))=C . Then, the value of lambda is

Evaluate: (i) int((x+1)e^(x))/(cos^(2)(xe^(x)))dx (ii) int x^(2)e^(x)-3cos(e^(x)-3)dx

If y=sin x+e^(x), then (d^(2)x)/(dy^(2))= (a) (-sin x+e^(x))^(-1)(b)(sin x-e^(x))/((cos x+e^(x))^(2))(c)(sin x-e^(x))/((cos x+e^(x))^(3))(d)(sin x+e^(x))/((cos x+e^(x))^(3))

The value of int_(ln pi-ln2)^(ln pi)(e^(x))/(1-cos(((2)/(3))e^(x)))dx=

int_(0)^(pi)(e^(cos x))/(e^(cos x)+e^(-cos x))dx=

(sin x) ^ (cos x) + e ^ (3x)

int (2x -3 cos x+ e^(x))dx