Home
Class 12
MATHS
If | vec a+ vec b|<| vec a- vec b|, ...

If `| vec a+ vec b|<| vec a- vec b|,` then the angle between ` vec aa n d vec b` can lie in the interval a. `(pi//2,pi//2)` b. `(0,pi)` c. `(pi//2,3pi//2)` d. `(0,2pi)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec a+vec b|<|vec a-vec b|, then the angle between vec a and vec b can lie in the interval a.(pi/2,pi/2) b.(0,pi) c.(pi/2,3 pi/2) d.(0,2 pi)

If angle between vec a and vec b is pi/3 then angle between vec a and -2vec b is:

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

If |vec(a)-vec(b)|= |vec(a)|=|vec(b)|=1 , then the angle between vec(a) and vec(b) is equal to a) (pi)/(3) b) (3pi)/(4) c) (pi)/(2) d)0

If |vec a| =4 , |vec b | = 2 and angle between vec a and vec b is pi/6 , then (vec a xx vec b)^(2) is

if |vec a|=4,|vec b|=2 and the angle between vec a and vec b is (pi)/(6) then (vec a xxvec b)^(2) is equal to

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is (pi)/(2), then

If vec a\ a n d\ vec b be two unit vectors and theta is the angle between them. Then vec a+ vec b\ is an unit vector, if theta= pi/2 b. (2pi)/3 c. pi/4 d. pi/3