Home
Class 12
MATHS
[" 9."N(1)" atoms of a radioactive eleme...

[" 9."N_(1)" atoms of a radioactive element "N_(2)" ,beta particles per "],[" second.The decay constant of the elemcnt is "],[[" (in "5^(-1))," [AIIMS - "20081],[" (1) "N_(1)/N_(2)," (2) "N_(2)/N_(1)],[" (3) "N_(1)" ( "ln2)," (4) "N_(2)" (in "2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

N_(1) atoms of a radioactive element emit N_(2) beta partilces per second. The decay cosntant of the element is (in s^(-1) )

N_(1) atoms of a radioactive element emit N_(2) beta partilces per second. The decay cosntant of the element is (in s^(-1) )

N_1 atoms of a radioactive element emit N_2 beta particles per second. Find the decay constant of the element (in s^(-1) )

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

1+n. (2n)/(1+n)+(n(n+1))/(1.2) ((2n)/(1+n))^2+…..

1+n. (2n)/(1+n)+(n(n+1))/(1.2) ((2n)/(1+n))^2+…..

We get N_(1) and N_(2) beta- perticles per second from two specimens of a radioactive specimen , then the ratio of number of atoms present in the sample in

When a transition of electron in He^(+) takes place from n_(2)" to "n_(1) then wave number in terms of Rydberg constant R will be ("Given "n_(1)+n_(2)=4, n_(2)-n_(1)=2)

When a transition of electron in He^(+) takes place from n_(2)" to "n_(1) then wave number in terms of Rydberg constant R will be ("Given "n_(1)+n_(2)=4, n_(2)-n_(1)=2)