Home
Class 11
MATHS
(d)/(dx)tan^(-1)((ax-b)/(bx+a))=...

(d)/(dx)tan^(-1)((ax-b)/(bx+a))=

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)((a-x)/(1+ax))] is equal to

int_(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=

(d)/(dx) [tan^(-1) ((a-x)/(1+ ax))] is

(d)/(dx)[tan{tan^(-1)((x)/(a))-tan^(-1)((x-a)/(x+a))}]=

d/(dx)[tan^(-1)((a-x)/(1+ax))] is equal to

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

d/(dx)tan^-1((1-x)/(1+x))=

d/(dx)tan^-1((1-x)/(1+x))=

(d)/(dx) {Tan ^(-1) ((x-a)/(1 + ax ))}=

At x=0," if " (d)/(dx) (tan^(-1) (a+bx))=1," then "a^(6)-b^(3)+1=