Home
Class 12
MATHS
The value of the integral I=int(1)^(oo) ...

The value of the integral `I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(1)^(3)|(x-1)(x-2)|dx is

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int_(-a)^(a) (xe^(x^(2)))/(1+x^(2))dx is

The value ofdefinite integral int_(-2)^(2)(x^(3)-x+1)/(sqrt(4-x^(2)))dx

The value of the integral int_(-a)^(a)(xe^(x^(2)))/(1+x^(2))dx is

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

The value of integral int_(-1)^(1) (|x+2|)/(x+2)dx is