Home
Class 12
MATHS
For a positive integer n let a(n)=1+1/2+...

For a positive integer `n` let `a(n)=1+1/2+1/3+1/4+1/((2^n)-1)dot` Then `a(100)lt=100` b. `a(100)dot> 100` c. `a(200)lt=100` d. `a(200)lt=100`

Promotional Banner

Similar Questions

Explore conceptually related problems

For a positive integer n let a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)cdots+(1)/((2^(n))-1). Then a(100) 100c.a(200)<=100d.a(200)<=100

The least positive integer n such that 1-2/3-2/3^2-............-2/3^(n-1) < 1/100 is

The number of positive integers satisfying the inequality C(n+1,n-2)-C(n+1,n-1)<=100 is

If 1/5-1/6=4/x , then x= -120\ (b) -100 (c) 100 (d) 120

The number of positive integers satisfying the inequality ""^(n+1)C_(3) - ""^(n-1) C_(2) le 100 is

The value of the integral int_0^(pi/2) (sin^100x-cos^100x)dx is (A) 1/100 (B) (100!)/(100)^100 (C) pi/100 (D) 0

Let a_n is a positive term of a GP and sum_(n=1)^100 a_(2n + 1)= 200, sum_(n=1)^100 a_(2n) = 200 , find sum_(n=1)^200 a_(2n) = ?

The number of positive intergers satisfying the in-equality ""^(n+1)C_(n-2)-""^(n+1)C_(n-1)le100 , is

The simplified value of (1+(1)/(1+(1)/(100)))(1+(1)/(1+(1)/(100)))-(1-(1)/(1+(1)/(100)))(1-(1)/(1+(1)/(100))) (a) 100( b) (200)/(101) (c) 200 (d) (202)/(100)