Home
Class 11
MATHS
If : A+B+C=pi "then" : 1 - sin^(2)""(A)...

If : A+B+C=`pi` `"then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)=` A)`2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2)`B)`2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2)` C)`2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2)` D)`2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B , C are angles of a triangle, then P. T sin ^(2) . (A)/(2)+ sin^(2). (B)/(2) - sin ^(2). (C)/(2) =1-2 cos. (A)/(2) cos. (B)/(2) sin .(C)/(2)

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

If A+B+ C =pi , then prove that cos ^(2) (A/2)+ cos ^(2) (B/2) +cos ^(2) (C/2)=2(1+sin . (A)/(2) sin. (B)/(2) sin. (C)/(2))

If A+B+C=pi , prove that : sin^2( A/2) + sin^2( B/2) -sin^2( C/2) =1-2 cos( A/2) cos(B/2) sin( C/2)

If A, B, C are angles of a triangle, then prove that sin^(2)""A/2+sin^(2)""B/2-sin^(2)""C/2=1-2cos""A/2cos""B/2sin""C/2 .

If A + B + C = pi , then show that sin (A + B + C)/( 2) = sin(A / 2) * cos "" (B + C)/( 2) + sin "" (B + C)/( 2) * cos "" (A) / (2)

sin A + sin B + sin C = 4cos ((A) / (2)) cos ((B) / (2)) cos ((C) / (2))

If A+B+C=180^(@), then prove that cos^(2)(A)/(2)+cos^(2)(B)/(2)+cos^(2)(C)/(2)=2(1+sin(A)/(2)sin(B)/(2)sin(C)/(2))

cos A + cos B + cos C = 1 + 4sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))