Home
Class 11
MATHS
The sum of all the solutions of cottheta...

The sum of all the solutions of `cottheta=sin2theta(theta!=npi, n ` integer) , `0lt=thetalt=pi,` is (a)`(3pi)/2` (b) `pi` (c) 3`pi/4` (d) `2pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of all the solutions of cottheta=sin2theta(theta!=npi, n in t ege r) , 0lt=thetalt=pi, is (3pi)/2 (b) pi (c) 3 pi/4 (d) 2pi

The sum of all the solutions of cottheta=sin2theta(theta!=npi, n in t ege r) , 0lt=thetalt=pi, is (3pi)/2 (b) pi (c) 3 pi/4 (d) 2pi

The sum of all the solutions of cot theta=sin2 theta(theta!=n pi,n integer) 0<=theta<=pi, is (a) (3 pi)/(2) (b) pi (c) 3(pi)/(4) (d) 2 pi

The sum of all the solutions of cot theta = sin 2 theta (theta ne n pi, n " integer"), 0 le theta le pi . is

Solve 2cos^2theta+sinthetalt=2, where pi/2lt=thetalt=(3pi)/2dot

Solve 2cos^2theta+sinthetalt=2, where pi/2lt=thetalt=(3pi)/2dot

Solve 2cos^2theta+sinthetalt=2, where pi/2lt=thetalt=(3pi)/2dot

The sum of all the solution is of the equation cos theta cos ((pi)/3+theta)cos ((pi)/3-theta)=1/4, theta in [0,6pi ]

denote the positive solution of the equation 3+3costheta=2sin^2thetadot The value of theta_3+theta_7 is 3 pi (b) 4 pi (c) 5 pi (d) 6 pi