Home
Class 12
MATHS
The probabilities of three events A ,B ,...

The probabilities of three events `A ,B ,a n dC` are `P(A)=0. 6 ,P(B)=0. 4 ,a n dP(C)=0. 5.` If `P(AuuB)=0. 8 ,P(AnnC)=0. 3 ,P(AnnBnnC)=0. 2 ,a n dP(AuuBuuC)geq0. 85 ,` then find the range of `P(BnnC)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

The probabilities of three events A ,B ,a n dC are P(A)=0. 6 ,P(B)=0. 4 ,a n dP(C)=0. 5. If P(AuuB)=0. 8 ,P(AnnC)=0. 3 ,P(AnnBnnC)=0. 2 ,a n dP(AuuBuuC)geq0. 85 , then find the range of P(BuuC)dot

The probabilities of three events A ,B ,a n d \ C are P(A)=0. 6 ,P(B)=0. 4 ,a n d \ P(C)=0. 5. If P(AuuB)=0. 8 ,P(AnnC)=0. 3 ,P(AnnBnnC)=0. 2 ,and P(AuuBuuC)geq0. 85 , then find the range of P(BnnC) .

The probabilities of three events A ,B ,a n d \ C are P(A)=0. 6 ,P(B)=0. 4 ,a n d \ P(C)=0. 5. If P(AuuB)=0. 8 ,P(AnnC)=0. 3 ,P(AnnBnnC)=0. 2 ,and P(AuuBuuC)geq0. 85 , then find the range of P(BnnC) .

The probabilities of three events A ,B ,a n dC are P(A)=0. 6 ,P(B)=0. 4 ,a n dP(C) If P(AnnB)=0. 8 ,P(AnnC)=0. 3 ,P(AnnBnnC)=0.2P(AuuBuuC)>0.85 , then find the range of P(B nn C)dot

The probabilities of three events A,B, and C are P(A)=0.6,P(B)=0.4, and P(C)=0.5. If P(A uu B)=0.8,P(A nn C)=0.3,P(A nn B nn C)=0.2, and P(A uu B uu C)>=0.85 then find the range of P(B nn C)

If P(A)=0. 3 ,\ P(B)=0. 6 ,\ P(B//A)=0. 5 , find P(AuuB) .

If P(A)=0. 3 ,\ P(B)=0. 6 ,\ P(B//A)=0. 5 , find P(AuuB) .

If A, B, C are events such that P(A)=0.3,P(B)=0.4,P(C )=0.8 P(AnnB)=0.08,P(AnnC)=0.28 P(AnnBnnC)=0.09 If P(AuuBuuC)ge0.75 , then find the range of x=P(BnnC) lies in the interval.

Let A ,B ,C be three events such that P(A)=0. 3 ,P(B)=0. 4 ,P(C)=0. 8 ,P(AnnB)=0. 88 ,P(AnnC)=0. 28 ,P(AnnBnnC)=0. 09. If P(AuuBuuC)geq0. 75 , then show that 0. 23lt=P(BnnC)lt=0. 48.

Let A ,B ,C be three events such that P(A)=0. 3 ,P(B)=0. 4 ,P(C)=0. 8 ,P(AnnB)=0. 88 ,P(AnnC)=0. 28 ,P(AnnBnnC)=0. 09. If P(AuuBuuC)geq0. 75 , then show that 0. 23lt=P(BnnC)lt=0. 48.