Home
Class 12
MATHS
The determinant |(a^2,a^2-(b-c)^2,bc),(...

The determinant `|(a^2,a^2-(b-c)^2,bc),(b^2,b^2-(c-a)^2,ca),(c^2,c^2-(a-b)^2,ab)|` is divisible by

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of determinant |{:(a^(2),a^(2)-(b-c)^(2),bc),(b^(2),b^(2)-(c-a)^(2),ca),(c^(2),c^(2)-(a-b)^(2),ab):}| is

The value of determinant |{:(a^(2),a^(2)-(b-c)^(2),bc),(b^(2),b^(2)-(c-a)^(2),ca),(c^(2),c^(2)-(a-b)^(2),ab):}| is

Prove that |(bc-a^2, ca-b^2, ab-c^2),(ca-b^2, ab-c^2, bc-a^2),(ab-c^2, bc-a^2, ca-b^2)| is divisible by a+b+c. Also find the value of the quotient.

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Prove that: |[bc-a^2, ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

|((b+c)^(2),a^(2),bc),((c+a)^(2),b^(2),ca),((a+b)^(2),c^(2),ab)|=

The determinant |{:(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2):}| equals …….

Show that |((a+b)^(2),(a-b)^(2),ab),((b+c)^(2),(b-c)^(2),bc),((c+a)^(2),(c-a)^(2),ca)|

The value of the determinant |{:(1,a, a^(2)-bc),(1, b, b^(2)-ca),(1, c, c^(2)-ab):}| is…..