Home
Class 11
MATHS
In any DeltaABC, prove that ((b^(2)-c^(2...

In any `DeltaABC`, prove that `((b^(2)-c^(2)))/a^(2)"sin 2a"+((c^(2)-a^(2)))/b^(2)" sin 2B+"((a^(2)-b^(2)))/c^(2)"sin 2C=0"`

Text Solution

Verified by Experts

By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")="k(say)"`
`rArr" a = k sin B and c = k sin C".`
Applying sine rule and cosine formula, we get:
`((b^(2)-c^(2)))/a^(2)"sin 2A"=((b^(2)-c^(2)))/a^(2)"(2 sin A cos A)"`
`=((b^(2)-c^(2)))/a^(2)((2a)/k)((b^(2)+c^(2)-a^(2)))/(2bc)" "[because"sin A"=a/k" and cos A"=((b^(2)+c^(2)-a^(2)))/(2bc)]`
`=1/("(kabc)")(b^(2)-c^(2))(b^(2)-c^(2)-a^(2))" ...(i)"`
`"Similarly,"((c^(2)-a^(2)))/b^(2)"sin 2B"=1/("(kabc)")(c^(2)-a^(2))(c^(2)+a^(2)-c^(2))" ...(ii)"`
`"And,"((a^(2)-b^(2)))/c^(2)"sin 2C"=1/("(kabc)")(a^(2)-b^(2))(a^(2)+b^(2)-c^(2))" ...(iii)"`
From (i), (ii) and (iii), we get
`"LHS"=((b^(2)-c^(2)))/a^(2)" sin 2A"+((c^(2)-a^(2)))/b^(2)"sin 2B"+((a^(2)-b^(2)))/c^(2)"sin 2C"`
`==1/("(kabc)")[(b^(2)-c^(2))(b^(2)+c^(2)-a^(2))+(c^(2)-a^(2))(c^(2)+a^(2)-b^(2)+(a^(2)-b^(2))(a^(2)+b^(2)-c^(2))]`
`=1/("(kabc)")xx0=0"RHS"`.
`"Hence,"((b^(2)-c^(2)))/a^(2)"sin 2A+"((c^(2)-a^(2)))/b^(2)" sin 2B +"((a^(2)-b^(2)))/c^(2)"sin 2C=0`.
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    RS AGGARWAL|Exercise EXAMPLE (Problems Based on Sine Cosine Formulae)|5 Videos
  • SOLUTION OF TRIANGLES

    RS AGGARWAL|Exercise EXERCISE 18 A|22 Videos
  • SETS

    RS AGGARWAL|Exercise EXERCISE-1H|15 Videos
  • SOME SPECIAL SERIES

    RS AGGARWAL|Exercise EXERCISE 13B (Very short Answer Questions)|9 Videos

Similar Questions

Explore conceptually related problems

In a ABC, prove that: ((b^(2)-c^(2))/(a^(2)))sin2A+((c^(2)-a^(2))/(b^(2)))sin2B+((a^(2)-b^(2))/(c^(2)))sin2C=0

In any ABC ,prove that (b^(2)-c^(2))/(a^(2))sin2A+(c^(2)-a^(2))/(b^(2))sin2B+(a^(2)-b^(2))/(c^(2))sin2C=0

For any triangle ABC,prove that (b^(2)-c^(2))/(a^(2))sin2A+(c^(2)-a^(2))/(b^(2))sin2B+(a^(2)-b^(2))/(c^(2))sin2C=0

In any DeltaABC , prove that a^(2)sin(B-C)=(b^(2)-c^(2))sinA

In any Delta ABC, prove that :(b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In any DeltaABC , prove that ((b-c))/acosA/2=sin((B-C))/2

In any DeltaABC , prove that (a-b)^(2)cos^(2)""C/2+(a+b)^(2)sin^(2)""C/2=c^(2).

In any Delta ABC, prove that :(b^(2)-c^(2))sin^(2)A+(c^(2)-a^(2))sin^(2)B+(a^(2)-b^(2))sin^(2)C=0

In any DeltaABC , prove that ("sin(A-B)")/("sin(A+B)")=((a^(2)-b^(2)))/c^(2)

In DeltaABC , prove that: (b-c)^(2)cos^(2)A/2+(b+c)^(2)sin^(2)A/2=a^(2)