Home
Class 11
MATHS
In a DeltaABC, if a = 18, b = 24, c = 30...

In a `DeltaABC`, if a = 18, b = 24, c = 30, find
(i) `sinA, sinB, sinC`
(ii) `cosA, cosB, cosC`

Text Solution

Verified by Experts

Here, `a^(2)+b^(2)=(18)^(2)+(24)^(2)=(342+576)=900=(30)^(2)=c^(2).`
`:." "DeltaABC" is right-angled at C. thus, "/_C=90^(@).`
(i) By sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")`
`rArr" "("sin A")/a=("sin B")/b=("sin C")/c="k (say)"`
`rArr" "("sin A")/18=("sin B")/24=("sin C")/30=k`
`:." "sinA=18k, sinB=24kandsinC=30k.`
`"But, "/_C=90^(@)rArrsinC=sin90^(@)rArr30k=1rArrk=1/30.`
`:." "sinA=18k=(18xx1/30)=3/5,B=24k=(24xx1/30)=4/5`
`"and sin C"==30k=(3-xx1/40)=1`.
Hence, `sinA=3/5,sinB=4/5andsinC=1`
(ii) Using cosine formulae, we get
`cosA=(b^(2)+a^(2)-b^(2))/(2ca)=((30)^(2)+(18)^(2)-(24)^(2))/(2xx24xx30)=(576+900-324)/(1440)=(1152)/(1440)=4/5`
`cosB=(c^(2)+a^(2)-b^(2))/(2ca)=((30)^(2)+(18)^(2)-(24)^(2))/(2xx30xx18)=((900+324-576))/(1080)=648/1080=3/5.`
`cosC=cos90^(@)=0`.
Hence, `cosA=4/5,cosB=3/5andcosC=0`
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    RS AGGARWAL|Exercise EXAMPLE (Problems Based on Sine Cosine Formulae)|5 Videos
  • SOLUTION OF TRIANGLES

    RS AGGARWAL|Exercise EXERCISE 18 A|22 Videos
  • SETS

    RS AGGARWAL|Exercise EXERCISE-1H|15 Videos
  • SOME SPECIAL SERIES

    RS AGGARWAL|Exercise EXERCISE 13B (Very short Answer Questions)|9 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC, if a=" "18 , b=" "24 , c=" "30 , find sinA, sinB, sinC

In any DeltaABC.a=18,b=24 and c=30, then what is SinC equal?

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

In triangleABC , which is not right angled, if p=sinA sinB sinC = and q=cosA. cosB. cosC. Then the equation having roots tanA,tanB and tanC is

In Delta ABC, if (Sin A + SinB + SinC) (SinA + SinB - SinC) = 3SinA SinB then C =

If A+B+C=180 , prove that: sinA+sinB+sinC=4cosA/2cosB/2cosC/2

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .

In DeltaABC ,prove that: sin2A + sin2B-sin2C=4cosA cosB sinC

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sinA/2 sinB/2sinC/2