Home
Class 10
MATHS
1+(1)/((1+2))+(1)/((1+2+3))+...+(1)/((1+...

1+(1)/((1+2))+(1)/((1+2+3))+...+(1)/((1+2+3+...n))=(2n)/((n+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the principle of mathematical induction prove that 1+(1)/(1+2)+(1)/(1+2+3)+(1)/(1+2+3+4)+...+(1)/(1+2+3+...+n)=(2n)/(n+1) for all n in N

Using the principle of mathematical induction prove that 1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+... +1/(1+2+3+..+n) =(2n)/(n+1) for all n in N

Prove that (1)/(2)+(1)/(2^(2))+(1)/(2^(3))+.......+(1)/(2^(n))=1-(1)/(2^(n)),n in N

lim_ (n rarr oo) (1+ (1) / (2) + (1) / (2 ^ (2)) + (1) / (2 ^ (3)) + ...... (1) / (2 ^ (n))) / (1+ (1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (3)) ...... (1) / (3 ^ (n)))

(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+.......+(1)/(n(n+1))=(n)/(n+1),n in N is true for

For all ngt=1 , prove that , (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + ……+ (1)/(n(n+1)) = (n)/(n+1)

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

prove that (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(n^(2)))=(n+1)/(2n) for all natural numbers,n>=1(1-(1)/(n^(2)))=(n+1)/(2n)