Home
Class 12
MATHS
Let f(x) = ax^(2) + bx + c, a != 0 and D...

Let `f(x) = ax^(2) + bx + c, a != 0 and Delta = b^(2) - 4ac`. If `alpha + beta, alpha^(2) + beta^(2) and alpha^(3) + beta^(3)` are in GP, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=ax^2 + bx+c whose roots are alpha and beta , a ne 0 and triangle=b^2-4ac . If alpha + beta , alpha^2 + beta^2 and alpha^3 + beta^3 are in GP then :

In the quadratic equation ax^(2)+bx+c=0, if fDelta=b^(2)-4ac and alpha+beta,alpha^(2)+beta^(2),alpha^(3)+beta^(3) are in GP.where alpha,beta are the roots of ax^(2)+bx+c=0, then

Let alpha,beta be the roots of the quadratic equation ax^(2)+bx+c=0and=b^(2)-4a*If alpha+beta,alpha^(2)+beta^(2)alpha^(3)+beta^(3) are in G.P.Then a.=0 b.!=0 c.b=0 d.c=0

In the quadratic equation ax^(2)+bx+c=0 if delta=b^(2)-4ac and alpha+beta,alpha^(2)+beta^(2),alpha^(3)+beta^(3) and alpha,beta are the roots of ax^(2)+bx+c=0

In the quadratic ax^(2)+bx+c=0,D=b^(2)-4ac and alpha+beta,alpha^(2)+beta^(2),alpha^(3)+beta^(3) are in G.P,where alpha,beta are the roots of ax^(2)+bx+c, then (a) Delta!=0( b) b Delta=0 (c) cDelta =0(d) Delta =0'

Suppose alpha, beta are roots of ax^(2)+bx+c=0 and gamma, delta are roots of Ax^(2)+Bx+C=0 . If a,b,c are in GP as well as alpha,beta, gamma, delta are in GP, then A,B,C are in

If alpha , beta are the roots of ax^(2) + bx +c=0 , then (alpha^(3) + beta^(3))/(alpha^(-3) + beta^(-3)) is equal to :

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=