Home
Class 12
PHYSICS
A block whose mass is 1 kg is fastened t...

A block whose mass is 1 kg is fastened to a spring. The spring has a spring constant of 100N/m. the block is pulled to a distance x=10 cm from its equilibrium position at x=0 on a frictionless surface from rest at t=0. the kinetic energy and potential energy of the block when it is 5 cm away from the mean position is

Promotional Banner

Similar Questions

Explore conceptually related problems

A block whose mass is 2kg is fastened to a spring. The spring has a spring constant of 100 Nm^(-1) . The block is pulled to a distance x=10 cm from its equilibrium position at x=0 on a frictionless surface from rest at t=0. Calculate the kinetic, potential and total energies of the block when it is 5 cm away from the mean position.

A block whose mass is 1kg is fastened to a spring. The spring has a spring constant of 50 Nm^(-1) . The block is pulled to a distance x=10 cm from its equilibrium position at x=0 on a frictionless surface from rest at t=0. Calculate the kinetic, potential and total energies of the block when it is 5 cm away from the mean position.

A block whose mass is 1 kg is fastened to a spring.The spring has a spring constant 50Nm^(-1) . The block is pulled to a distance x=10cm from its equilibrium position at x=0 on a frictionless surface at t=0 . Calculate the kinetic, potential and total energies of the block when it is 5cm away from the mean position.

A block whose mass is 1 kg is fastened to a spring.The spring has a spring constant 50Nm^(-1) . The block is pulled to a distance x=10cm from its equilibrium position at x=0 on a frictionless surface at t=0 . Calculate the kinetic, potential and total energies of the blocak when it is 5cm away from the mean position.

A block whose mass is 1kg is fastened to a spring. The spring has a spring constant of 50 Nm^(-1) . The block is pulled to a distance x=10 cm from its equilibrium position at x=0 on a frictionless surface from rest at t=0. Calculate the kinetic, potential and total energies of the block when it is 7.07 cm away from the mean position.