Home
Class 12
MATHS
" If "f(n)(x)=e^(f(n-1)(x))" for all "n ...

" If "f_(n)(x)=e^(f_(n-1)(x))" for all "n in N" and "f_(0)(x)=x" then "(d)/(dx){f_(n)(x)}" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

f_(n)(x)=e^(f_(n-1^(x))) for all n inN and f_0(x) = x , then (d)/(dx){f_(n)(x)} is

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a) (f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c) f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a) (f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c) f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a)(f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c)f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

Let f_(1)(x)=e^(x),f_(2)(x)=e^(f_(1)(x)),......,f_(n+1)(x)=e^(f_(n)(x)) for all n>=1. Then for any fixed n,(d)/(dx)f_(n)(x) is

Let f_1(x)=e^x,f_2(x)=e^(f_1(x)),"........",f_(n+1)(x)=e^(f_n(x)) for all nge1 . Then for any fixed n,(d)/(dx)f_n(x) is

Let f _(1)(x) =e ^(x) and f _(n+1) (x) =e ^(f _(n)(x))) for any n ge 1, n in N. Then for any fixed n, the vlaue of (d)/(dx) f )(n)(x) equals:

Let f _(1)(x) =e ^(x) and f _(n+1) (x) =e ^(f _(n)(x))) for any n ge 1, n in N. Then for any fixed n, the vlaue of (d)/(dx) f )(n)(x) equals:

Let f(x) = (x^2 - x)/(x^2 + 2x) , then d/(dx) (f^(-1)(x))^(-) is equal to