Home
Class 12
MATHS
समीकरण dy/(dx)=e^(x)y+y का हल है -...

समीकरण `dy/(dx)=e^(x)y+y` का हल है -

Promotional Banner

Similar Questions

Explore conceptually related problems

यदि x^(y)=y^(x) [जहाँ x ne y ] का हल है -

(dy)/(dx)=(x+e^x)/(y+e^y)

(dy)/(dx) = e^(2x-y) + x^(3) e^(-y)

(dy)/(dx)=e^(x+y)+x^(2)e^(y)

(dy)/(dx)=e^(x-y)+x^(2)e^(-y)

Solve dy/dx=e^(x-y)+x^2e^-y

Solve (dy)/(dx)= e^(x-y) + x^2 e^(-y) .

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

अवकल समीकरण का निर्माण | अवकल समीकरण का हल | चर पृथककरण